Measure Theory with Ergodic Horizons Lecture 30

We would now like to characherize those tructions
$$f: \mathbb{R} \to \mathbb{R}$$
 which are distributions of for.
finite Bund measures p on \mathbb{R} with $p \ll \lambda$. We already know that such a traction is
right-continuous and increasing, and $p \ll \lambda$. We already know that such a traction is
right-continuous and increasing, and $p \ll \lambda$. Together with local timiteness of p , gives: $\forall (a, b)$
 $\forall s > 0 = 3d > 0$ such that $\forall B \leq (a, b)$
 $\lambda(B) \leq S \implies p(B) \leq S$.
For open B, we know that $B = \coprod (a_n, b_n)$ so $\lambda(B) = \sum_{n \in \mathbb{N}} (b_n - a_n)$ and $p(B) - \sum_{n \in \mathbb{N}} p((a_n, b_n))$
but p has no atoms by $p \ll \lambda$, so $p((a_n, b_n)) = p((a_n, b_n)) = f(b_n) - f(a_n)$, so
 $p(B) = \sum_{n \in \mathbb{N}} (f(b_n) - f(c_n)) = \sum_{n \in \mathbb{N}} |f(b_n) - f(a_n)|$. Thus, we have
 $\chi(B) = \sum_{n \in \mathbb{N}} (b_n - a_n) \leq S \implies p(B) = \sum_{n \in \mathbb{N}} |f(b_n) - f(a_n)| \leq S$.

This motivates the following:

Def. A function
$$f: \mathbb{R} \to \mathbb{R}$$
 is called absolutely continuous on (a, b) if $\forall s > 0 = J = J$
for all open $\bigcup (aa, ba) \leq (a, b)$, we have
 $\underset{n \in \mathbb{N}}{\overset{n \in \mathbb{N}}{\underset{n \in \mathbb{N}}{\sum}} (b_n - a_n) \leq J \implies \underset{n \in \mathbb{N}}{\overset{n \in \mathbb{N}}{\underset{n \in \mathbb{N}}{\sum}} |f(b_n) - f(a_n)| \leq L$.
We say that t is locally absolutely cubinnous if t is absolutely continuous on
overy $(a, b) \leq \mathbb{R}$.

Examples, Lipschitz => absolutely watermane => uniformly waterwas.

Theorem (characterization of distributions of $\mu \ll A$), for an increasing $f:\mathbb{R} \to \mathbb{R}$, TFAE: (1) f is a distribution of a loc. finite Bonel measure $\mu \ll \lambda_{i}$ (2) FTC holds for f, i.e. f' exists a.e. and $f(b) - f(a) = \int f' d\lambda$ for all $a \ll b$. (3) f is locally absolutely untimous.

Proof. (1) (=> (1) was proved last time and (1=>(3) was argued above by restricting pred
to open site. We show (3) > (1) by the regularity of p. Suppose (3).
Since t is increasing and continuous, it is a distribution of a loc. finite nonatomic
has, finite Danel measure proc IR. To show that pred, fix a
$$\lambda$$
-mell cet BE(4,1)
and thow Mt pr (B) = 0, or equivalently, pr(B) < 2 for all $2 > 0$.
Let 5=0 be given by absolute continuity on (a, b) for this E. By regularity of
 λ , there is no open set U 2B right that $\lambda(U) < 5$. But then U = U(a, bn),
new new new production of the production of the set of

We now give an example of a uniformly continuous increasing function that is not absolutely uchincous.

Example (Ku devil's striccase). Ut
$$\Psi: 2^{(N)} \rightarrow R$$
 by upping biancy representations: $X \mapsto D.(R:x_0)(2:x_1)...$ Thus, Ψ is a homeocomplished between 2^W and the studeoid (above set C. let μ on R be the produtorward measure of Benoulli $(\frac{1}{2})$ by Ψ . Then, the distribution $f(X) := \mu((0, x_3))$ of μ is a continuous increasing transform $f \in [0, 1]$, is particular, unitationly continuous increasing transform $f \in [0, 1] \rightarrow [0, 1]$, is particular, unitationally continuous increasing transform $f = [0, 1] \rightarrow [0, 1]$, is particular transformed to devil's staircase.
The Devil's staircase Control for the center transformed of devil's traincase.
The Devil's staircase Control for the center transformed of $0.2002222...$. The weight of the first 1, if exists, and ture all $2's$ into $1's$. So $f(0, 2012, 202...) = 0.101$ and $F(0.202, 022, 20, ...) = 0.101$ and $F(0.202, 022, ...) = 0.101$ and $F(0.202, 022, 20, ...) = 0.101010...$.

Det. For a signed measure
$$v$$
 on some newsmable space, let $v = v_t - v_-$ be its Hahn de-
composition into a difference of measures. Denote $v_{tr} := v_r + v_-$ and call if the total varia-
tion of v . We say that v is finite if v_{tr} is a finite measure.

For a timbe signed Bond measure v on IR, f=IR -> IR is called a distribution of $Y \quad if \quad \forall (a, b]) = f(b) - f(a) \quad for example, \quad f(x) := \left\{ \begin{array}{l} \forall ((o, x]) & \text{if } x > 0 \\ \forall ((x, 03)) & \text{if } x \leq 0 \end{array} \right\}$ These touching one multiple on to a constant These tructions are unique up to a constant.

We know but a finite measure has hald distribution. We well to come up with The writed anaque of "bdd" for signed measures let is be a finite righed measure on IR and lef f: R > IR be a distribution of v. By Hahn decomposition of V = V+-V-, we leave We f+f+-f-, where f+, f- are the respective destributions

et
$$v_{+}, v_{-}$$
. So f is a difference of two increasing turkions, each of chick
is bold. We would like by understand how to find this f_{+} and f_{-} .
By the histories of v_{+} , $v_{+}(B) \leq v_{+}(R) < 0$. This, for any open $U = U(a_{+}b_{+})$,
 $\infty > \sqrt{*}(R) \equiv v_{+}(U) \equiv \sum_{n} v_{+}((a_{n}, b_{-})) \approx \sum_{n} |v|(a_{-}, b_{-})| = \sum_{n} |f(b_{n}) - f(a_{-})|.$
This unbiates the following:

 $M(L + for + R - R) = |R|$, let $T_{c}: R \rightarrow SO, w]$ be defined by:
 $T_{T}(x) := rup \{\sum_{i=0}^{n} U(x_{i}) - f(x_{i})\} = -\infty < x_{0} < x_{1} < \dots < x_{n} \leq x\}.$

To colled the following:

 $Mode = For a < b_{+}, T_{T}(b) = -T_{T}(b) = sup \{\sum_{i=0}^{m} |f(x_{i}n) - f(x_{i})|: a \leq x_{0} < x_{1} < \dots < x_{n} \leq b\}$ is
the vertical distance two eled by the graph of f on (a, b) .

Prove that $I = roote = 1$. The following is the difference of f is a difference of f is a difference of f in $f_{1}(b) = -T_{T}(b) = \frac{1}{2} (T_{T} + f) - \frac{1}{2} (T_{T} - f).$

Prove that f is a difference of f and f in finite bound signed measures ≤ -3 ?

We can also prove the analogue if FTC for (potentially noniccreasing) tanchious:

Prost-sketch. This follows from the analogous theorem for increasing functions and the East that bold total variation is equivalent to being a difference of two bold increasing fourtions. Details left as HW.